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Abstract. In this paper we present a thorough analysis of the removability of the Berry 
phase. We show that for any system we can, by properly restricting the parameter space, 
turn the geometrical phase into an extra shift of the dynamical one. However, this extra 
shift in the dynamical phase retains its truly geometrical character. The removability is thus 
only apparent and the geometrical phase can still be measured in interference experiments, 
as indeed has already been done several times. 

1. Introduction 

When a Hamiltonian H depends on slowly changing parameters, the quantum dynamics 
is approximately described by the instantaneous eigenstates of H multiplied by a time- 
dependent phase. If H evolves in a cycle, so that H ( T )  = H(O), this phase contains two 
parts: a dynamical phase, the integral of the instantaneous frequency E n ( t ) / h ,  and an 
additional phase (Berry 1984) which can be related to the geometry of a Hilbert space 
bundle over the base space of parameters (Simon 1983, Kiritsis 1987). The Berry phase 
depends only on the path taken in parameter space and not on the rate of progress 
along that path. It is gauge invariant, in the sense that we can freely redefine the 
phases of the instantaneous eigenstates without affecting it. However, there is another 
freedom due to the fact that different Hamiltonians can describe the same physical 
system. These Hamiltonians are related (classically) by canonical or (quantally) by 
unitary transformations, depending generally on time. It might seem that, using these 
time-dependent unitary transformations, Berry's phase can be removed; but that is not 
the case. The geometrical phase can be shifted into the dynamical part but it retains 
its geometrical character and indeed it can be measured experimentally. 

The paper is organised as follows: in § 2 we recall the various techniques known 
from the literature for deriving the Berry phase and set up the formalism necessary 
to deal with the removability issue; we also call attention to the global aspects of the 
problem. In 0 3 we further expand and clarify the theoretical framework developed 
in 4 2 by means of some examples and experiments (actually performed or simply 
proposed). The appendix contains the analysis of the removability problem at the 
classical level. 

0305-4470/89/173513+17$02.50 @ 1989 IOP Publishing Ltd 3513 
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2. General framework 

The starting point for our application of the adiabatic technique relies on the possi- 
bility of instantaneously diagonalising a time-dependent Hamiltonian H ( t )  whose time 
evolution is slow enough so that no level transition is induced by the dynamics. To 
develop Berry’s phases, we have to impose on our system the additional requirement 
that, after a period T ,  the Hamiltonian H ( t )  comes back to its starting value H ( 0 ) :  

H ( T )  = H(0) .  (2.1) 

H ( t )  is instantaneously diagonalised as 

where U ( t )  is a unitary operator and H,(t) is diagonal in a (fixed) orthonormal 
basis { In ) } :  H,(t) = diag(E,(t), E2(t),.. .). With no loss of generality we can impose 
the boundary condition U ( 0 )  = 1. It is obvious from (2.2) that the instantaneous 
eigenstates of H ( t )  are given by U ( t )  In). Because of the cyclic property of H ( t ) ,  an 
eigenstate U ( T )  In) of H ( T )  can differ from In) at most by a phase factor 

U ( T )  In) = exp(ia,(T)) In) ’ (2.3) 

From this last relation, as U ( T )  and H,(O) are diagonal in the same basis In), we 
deduce that 

[ U ( T )  9 HD(o)] = O. (2.4) 

Next we notice that the U ( t )  are not uniquely determined by (2.2) and (2.4). Indeed 
we are still free to redefine U ( t )  as 

where n(t) is any unitary operator satisfying 

n(0) = I [n(t), H,(t)] = 0. 

A possible way to fix U ( t )  unambiguously is to impose on U ( t )  the ‘parallel transport’ 
condition (Messiah 1981, Simon 1983, Anandan and Stodolsky 1987, Jordan 1988) 

(ni ~ + ( t ) U ( t )  in) = 0. (2.6) 

With the help of this further assumption, starting from a state In) at t = 0 and 
exploiting the adiabatic hypothesis of no level crossing, we can solve the time-dependent 
Schrodinger equation and obtain (Messiah 1981) 

In,t) N exp (-; lr E,(r) d r )  U ( t )  In). 

Because of the cyclic property of H ( t ) ,  at time T we end up with the same initial state 
In) multiplied by an overall phase ion :  

In, T )  = ex~(i@,(T)) In) 
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with 

(D,(T) = -- E,@)  dt + ?,(TI (2.7) 

where y,(T) is given by U ( T )  In) = exp(iy,(T)) In). Note that y,(T) is not the same as 
cr,(T) from (2.3), but is obtained from the parallel-transported U ( t )  (2.6). We see from 
(2.7) that, besides the expected dynamical phase, we have a contribution of purely 
geometric origin, y,(T), which is Berry’s phase. We want to point out that it is only by 
virtue of the parallel transport constraint (2.6) that we can read the geometrical part 
of the total phase directly from the eigenvalues of U ( T ) t .  

Let us now address the issue of unitary time-dependent transformations W(t )  acting 
on the vectors of our Hilbert space. The Schrodinger equation for the transformed 
states @ ( t ) )  = W ( t )  Iy( t ) )  is 

where 

with 

H’(t)  = W(t)H(t)W+(t).  

The adiabatic assumption requires that W ( t )  not induce transitions among the eigen- 
states of H’( t ) ;  then only the diagonal part of (2.8) should be considered, so that 

H ( t )  rr H’(t) - i t ? C p ~ ( t ) ~ ( t ) W ’ ( t ) ~ : , ( t )  
n 

N U’(t)Hb(t)U’t(t)  

where PL(t) is the projector onto the nth state of H’(t) and U’( t )  = W(t )U( t ) .  We 
must stress at this point that now only U ’ ( t )  must be subject to the parallel transport 
condition (2.6) and, for this reason, we are led to relax the same requirement for U ( t ) .  

Starting from f i ( t )  we then obtain the analogue of (2.7) with the new phase (Dk(T) 
given by 

(E,(t) + E p ) ( t ) )  dt + &(T)  (2.9) 

where E p ) ( t )  = -ift(nl U t ( t ) W t ( t ) W ( t ) U ( t )  In) and yA(T) is again given by 

U” I4 = exP(iy;(T)) In) (2.10) 

t Notice that if we do not restrict the U ( t )  to satisfy (2.6) we obtain, of course, the same total phase 
(which is a quantity physically sensible and measurable) but the geometrical part of the phase is in the form 
y,(T) - (l /A) l,’dt (ni U t ( t ) U ( t )  In), where yn(T)  has the same meaning but a different value from the one 
given in (2.7) (this kind of approach was used for example by Bouchiat (1987)). In this context it is easy to 
convince oneself that the substitution (2.5) leaves unchanged the geometrical phase. 
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(now &(t) = E,(t) + E P ) ( t )  are the instantaneous eigenvalues of fi(t)). Equation (2.7) 
explicitly shows that a unitary transformation changes the balance between dynamical 
and geometrical parts of the phase. Having established this general formalism it is 
easy to find that particular unitary transformation W ( t )  which makes $h(T) entirely 
dynamical; it is 

W ( t )  = U?(t ) .  

In this case U’(t)  = 1 so (2.4) and (2.6) are trivially satisfied and we can see from (2.10) 
that 

yh(T) = 0 mod2n. 

With this transformation we have ‘apparently’ removed the geometrical part of the 
phase. However it is straightforward to show that @,, = @; so what we have done is 
just a complete shift of the geometrical part into the dynamical one but preserving the 
total phase. 

In his original paper Berry (1984) considered Hamiltonians depending on time only 
through a set of slowly varying parameters R , ( t ) :  H ( t )  = H(R(t)). The assumption 
that H depends on time through a set of parameters R, forces us to enlarge our ‘local’ 
notion of time-dependent Hamiltonians H(t ) .  If we look at our Hamiltonian H ( t )  as 
depending simply on the evolution parameter t (time) it follows that in the adiabatic 
approximation the dynamics generates a local one-parameter group of transformations 
( U ( t ) ) .  Writing H ( R )  instead of H ( t )  takes us from a local to a global analysis of 
the problem; in fact H ( R )  in principle allows us to ‘probe’ not only a fixed path R(t )  
in parameter space (which may be relevant in a particular experiment) but the whole 
of parameter space. Probing the parameter space as a whole we might encounter the 
topological subtleties connected with its geometry. Namely, if we try to instantaneously 
diagonalise H(R) ,  

H ( R )  = U ( R ) H , ( R ) U t ( R )  

we might be unable to define U ( R )  globally over the parameter space (Kiritsis 1987, 
Gozzi and Thacker 1987b). Supposing for the moment that there are no topological 
obstructions to defining U ( R )  globally, let us rephrase the issue of removability in 
terms of an H depending on R,.  In this picture the unitary operator U(R) ceases 
in general to fulfil the parallel transport condition (2.6), while the cyclic condition 
(2.1) can be obtained by moving on closed loops in R, so that (2.4) is automatically 
satisfied since U ( R ( T ) )  = U(R(0))  = 1. We still have the freedom of making the 
substitution indicated in (2.5) with n(t) = R(R( t ) )  ; this now amounts to multiplying 
the instantaneous eigenvalues of H ( R )  by a parameter-dependent phase factor and 
corresponds exactly to a gauge transformation which does not affect the geometrical 
part of the phase (Berry 1984). The total phase in this description takes the form: 

(2.11) 

We recognise in the second term on the right-hand side the geometrical part of the 
phase written as a contour integral of a 1-form (Berry’s connection) defined over 
parameter space. 
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In order to remove the phase we perform on the states the usual unitary trans- 
formation effected by W(t) ,  now depending on time only through the cyclic R , :  
W ( t )  = W(R(t)). The new phase is then 

@L(T) = - L T ( E , ( R )  + Er)(R))d t  

where E?) has the same form as in (2.9). Once again the choice W ( R )  = Ut(R) 
would make the Berry phase entirely dynamical. So also in this picture, if there are 
no topological obstructions, we can ‘apparently’ remove the Berry phase. However, we 
stress that the extra dynamical part -(l/fi) i,’ Ep)(R)dt keeps its geometrical character; 
indeed we see from the expression for E?), that the integral of E?)(R) over time does 
not depend on the rate of progress around the loop since E P )  contains only the first 
derivative with respect to t of R .  In this sense it depends only on the ‘geometry’ of the 
loop while the same does not hold for E,(R).  

Returning to the issue of removing the Berry phase globally, we note once again 
that it concerns the possibility of defining the operator U ( R )  (which instantaneously 
diagonalises H ( R ) )  globally over the parameter space. If the Hilbert space bundle 
defined by the Berry connection is non-trivial we cannot do this. But even if the 
bundle is trivial, the geometrical phase does not disappear, it is simply shifted into the 
dynamical one and moreover it retains its geometrical Character?. 

In the next section we illustrate the previous points with reference to hypothetical 
or actual experiments. 

3. Examples and experiments 

As a first example, consider the parametric harmonic oscillator (Hannay 1985, Berry 
1985). The Hamiltonian is 

= ; [UP2 + P(P4 + 4P) + w21 
where a, P, and y are slowly varying parameters, ay > P2 and CI > 0. The energy levels 
are E ,  = (n  + ;)(ay - P2)ll2.  The Berry phase for a closed circuit ‘-if? in CI, P and y is 

(This extra phase could perhaps be detected in an interference experiment similar to 
the one described by Rohrlich (1988) but with a charged particle.) Jackiw (1988) and 
de Sousa Gerbert (1989) add the total time derivative of -Pq2/2u to the_ classical 
Lagrangian; this induces a canonical transformation to a new Hamiltonian H with no 

t Strictly speaking, all these considerations apply only if an ‘effective’ parameter space is considered. These 
effective parameters are singled out by means of an algebraical approach that consists of closing the algebra 
to which H ( R )  belongs. In this way H ( R )  is, in general, embedded in a wider class of Hamiltonians showing 
explicitly their dependence on the effective parameters. For more details on this subject see Giavarini er al 
(1 989). 
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cross term in p and q and y replaced by y - p 2 / a  - (d/dt)(P/a). At the quantum level, 
we obtain fi from H via the unitary transformation- W = exp(iPq2/2a). By applying 
(3.1) we can verify that no Berry phase arises from H. The phase is present, however, 
in a new guise: the instantaneous energy levels are now 

where the dots refer to terms with two or more time derivatives of the slow parameters. 
The difference between E, and E,, when integrated over time as part of the dynamical 
phase, is equivalent to the Berry phase in (3.1). de Sousa Gerbert (1989) notes this 
shift and suggests that the Berry phase loses its geometrical significance when it can be 
cancelled globally. The Berry phase has been removed in the sense that the quantum 
adiabatic theorem, without Berry’s modification, correctly accounts for the extra phase. 
But even though the extra phase is now dynamical, it retains its geometric character: it 
depends only on the (closed) path in parameter space and not on the rate of progress 
along the path. The adiabatic assumption is essential here; note by comparison that 
if we make the generalised phase of Aharonov and Anandan (1987) dynamical, terms 
with more than one time derivative cannot be neglected. Then it is more problematic 
to decide what is geometrical. 

A simple example of global removability of the Berry phase is given by the ‘displaced 
harmonic oscillator’ (Chaturvedi et a1 1987), a system described by the Hamiltonian 

H = ( p  - p)2 + (4 - ~ r ) ~  

where a, p E IR are the adiabatic parameters. The instantaneous eigenvalues of H are 
the odd integers E ,  = 2n + 1 and do not depend on the external parameters. The Berry 
phase is known to be the same for all the eigenstates 

The parameter space (IR x W) is flat and topologically trivial. Thus it is straightforward 
to find a unitary operator U(&, /?) ,  globally defined over the parameter space, that 
diagonalises instantaneously the Hamiltonian. We rewrite H as 

where 

U ( a ,  p )  = exp(-iccp + ipq). 

At this point it is natural to remove the geometrical phase by means of the unitary 
transformation W(a,p)  = U t ( a ,  p),  leading to the new Hamiltonian 

E N p* + q 2  + ;(cc8 - tip), 

where non-diagonal contributions have been dropped. This transformation amounts to 
renormalising the eigenvalues E,  by the quantity ;(ab - drp); the extra contribution to 
the energy levels of the oscillator, when integrated over time, yields Berry’s phase. (At 
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the classical level the canonical transformation corresponding to W(u, p)  is generated 
by the function F ( P , q ; u , P )  = ( q  - .)(P - P )  + i ap . )  

Among the papers reporting measurements of Berry’s phase are several that note the 
freedom to change the form of the Hamiltonian. The Berry phase of a spinning particle 
in a magnetic field (Berry 1984) was measured by Bitter and Dubbers (1987) among 
others. They used beams of polarised neutrons in a twisting magnetic field. The twisting 
field represented an external parameter going through its adiabatic cycle, and the Berry 
phase is proportional to the solid angle swept out. This experiment does not exactly 
fit Berry’s definition since the neutrons were not polarised along the direction of the 
field. The geometrical principle is nevertheless the same and the predicted phase shift 
was observed as an additional rotation of the precessing neutrons. The authors remark 
that ‘in its simplest manifestation, which we believe to have realised, the appearance of a 
topological phase seems to be trivial: it can be generated or transformed away by going 
to a rotating-reference frame...’. It should be noted that their experimental setup did not 
permit the magnetic field to point directly along the beam axis. By excluding a region 
from the parameter space, they let their experiment probe only local trivialisations of 
the U(1) phase bundle, which in this case is a monopole bundle. This topological issue 
can be kept separate, however, because even if the bundle is trivial, the geometric phase 
can still be detected. 

For this specific experiment we have to consider the quantum Hamiltonian 

but with the parameter space (which in this case is a sphere) restricted by removing 
the south pole. Then we can rewrite H in the following way: 

where 

B = IBI (3.3) 

and 5 = - exp(-iq) tan 8/2 corresponds to the stereographic projection of the sphere 
from its south pole to the complex plane i (8 and cp indicate the direction of the 
magnetic field B ) .  We observe that [ is not well defined for 8 = n, that is the south 
pole; this is just the above-mentioned ‘restriction’ of the parameter space: the systems 
described by (3.2) live in a local trivialisation of the monopole bundle. Now, following 
the general prescription of 6 2, the transformation needed to remove the phase is given 
by W ( i )  = U t ( [ )  so that the new Hamiltonian is 

where the subscript D indicates that, in accordance with the adiabatic approximation, 
only the diagonal part should be taken into account. It is simple algebra to verify that 

(3.4) 
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The final form for the Hamiltonian is then 

In this new frame the magnetic field has the apparent magnitude B' = B + (1 -cos e)@ 
and points along 03, so it cannot sweep a solid angle. Consequently there is no 
additional geometrical contribution to the phase. However the precession rate of the 
neutrons is proportional to the new field B' and the extra term (1 - cos e)@ reproduces 
the Berry connection; the anholonomy is still present and is accounted for by an extra 
precession of the polarisation vector. We still call this extra term geometrical because 
it does not depend on the rate of progress along the loop. We can equally well perform 
the same kind of analysis at the classical level (see the appendix for details). 

To convince the reader that this extra dynamical piece can actually be measured, 
we will analyse a couple of conceptual experiments based on interferences effects. These 
effects are crucial in singling out the geometrical part of the phase. In fact interference 
effects can be made insensitive to the frame (rotating or not) in which we measure 
them. 

Figure 1. Berry's proposed experiment of a beam of neutrons that is split into two, one 
moving under a constant magnetic field B ,  and the other moving in a rotating B that 
describes a closed loop W. 

The first experiment is the one proposed by Berry (1984,1986). Take one beam of 
polarised neutrons and split it into two (see figure 1). One beam passes through an 
area with constant magnetic field B ;  the other beam goes through a region where the 
magnetic field B is constant in magnitude but slowly, in a period T ,  winds around a 
circuit %? subtending a solid angle Q(%?). The two beams are then recombined and the 
intensity 9 of the recombined beams is measured. After the period T the wavefunctions 
for the neutrons in the two beams (assuming the spin-up states) are given respectively 
by 

The intensity of the recombined beams is 

= [2 + 2cos (?)I . 
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From 9 we can measure the geometrical part S2(%‘)/2 of the phase. Let us now imagine 
that we go into a rotating frame moving with the magnetic field B felt by the second 
beam (by ‘rotating frame’ we mean the frame related to the matrix U(() of (3.3)); we 
have then that the geometric part of the phase of the second beam is shifted into the 
dynamical one. The ‘rotated’ wavefunction is 

where E(t )  is the one given by (3.5). From the frame of the rotating B, the other 
neutron now feels a magnetic field rotating and describing a loop -% that subtends a 
solid angle -Q(%‘) ; its wavefunction is then 

T c, = exp (-; S, E( t )  dt + )m(%‘)) . 

The new intensity 9’ is 

So in the rotating frame the pattern of interference is still the same. This indicates a 
way to really single out the purely geometrical part: the trick is to have interference 
between the two systems and not simply to look at an isolated one. 

I Detector 

Figure 2. Double-slit experiment for neutrons moving in a B field that changes with z but 
is constant in x. 

We can also envision the following more realistic experiment conceptually equiva- 
lent to the previous one. Imagine a double-slit experiment with neutrons in a magnetic 
field (see figure 2) 

B(z )  = B [ a  sin 8 cos(ez) + 9 sin 8 sin(8.z) + z  ̂cos 81. 

B rotates slowly, moving along the coordinate z ,  since E is a small parameter (it plays 
the role of ‘slowness’ parameter). Let polarised neutrons, moving in the 2 direction, 
pass through slits lying along the z axis. In addition to the usual interference pattern 
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Silt 1 

Beam - 
S i l t  2 

Detector 
7 

z.0 

Figure 3. The same double-slit experiment as in figure 2 with the detector moved upward. 

due to the difference in path lengths, there will be an extra shift because the neutrons 
have been rotated different amounts by the field, depending on the 2 component of 
their path. If we arrange the distance Az between the slits so that EAZ = 271, then the 
different rotations of the beams correspond to one closed loop in parameter space. 
Berry’s phase will appear as a shift in the pattern of fringes with respect to the case 
with constant B. The Hamiltonian of the system (neglecting the 9 direction) is 

1 
2m 

H = - ( p i  + p i )  + ifi U . B(z). 

We can diagonalise H to order E using the operator U([) given in ( 3 . 3 )  with 
P e’ = e + 2 s  sin e. 

mB [ = - exp(-isz) tan 8 7 2  

Thus 

H N U ( [ ) H D U t ( [ )  -t O(E’) 

where HD turns out to be 

The first and the second terms are due, respectively, to the kinetic and magnetic energy 
of the neutrons; the third is the geometrical one: note in fact that it is O(E). From 
figure 3 it is easy to calculate the difference in path length at the point z and then to 
get the phase difference between the two beams. It will turn out to be the usual one of 
the two paths in a constant B field augmentedt by the extra term present in H,; so 
the overall pattern of fringes will be shifted by a factor of -n( l  - cos 0). Thus Berry’s 
phase appears with the expected magnitude. If we want to observe the geometrical 
phase we have to compare the pattern of fringes in a constant B with the shifted one 
for the z-dependent B. There is a difference between this example and the previous 
one, however: before, we changed to a reference frame that rotated with respect to 
both beams, and the effect on the phase in one beam was cancelled by the effect on the 
other. Here, the rotation is effected locally, because the unitary matrix U([) depends 
on position and affects the two beams differently. 

In the experiment described in figure 1 (proposed by Berry) the two beams had the same path length so 
the only difference was of purely geometric origin. 
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These two conceptual experiments reflect the fact that indeed Berry’s phase has been 
measured in real experiments. Examples include the NMR interferometry experiments 
(Suter et a1 1988, Tycko 1987), the polarisation states experiments with lasers (Bhandari 
et a1 1988, Simon et a1 1988) or the experiment of Bitter and Dubbers (1987) itself. 
In particular Tycko (1987) discusses issues close to ours in showing how the geometric 
phase can appear in his experiment as ‘fictitious’ dynamical phase, but he can still 
measure it. 

4. Conclusions 

We have seen that Berry’s phase can always be cancelled by a unitary transformation, 
once the parameter space has been suitably restricted (if necessary). However the phase 
reappears as dynamical and can in principle be measured unambiguously. Moreover it 
retains its geometrical character of depending only on the loop in parameter space and 
not on the rate of progress along it. Regarding the issue of global removability, the 
example of a spin in a magnetic field is one where the Berry phase cannot be removed 
globally, yet in all the experiments discussed above, the bundle became trivial by virtue 
of restrictions on the parameter space. A single measurement can, in general, probe 
only local trivialisations of these bundles and it is hard to imagine how any experiment 
could verify that a bundle is indeed non-trivial. 

We conclude by observing that there is no conflict between this ‘experimental’ 
triviality and the fact that Berry’s phase can still be detected and not taken away; 
experiments simply verify that the geometrical phase arises in a particular form, which 
corresponds to a section of a bundle (in general non-trivial). Moreover the form of the 
Berry connection is unchanged, though it shifts into the energy term. For example in 
the case of the spinning particle in a magnetic field, the Berry connection is (1 -cos 0)dq 
also when shifted into the dynamical phase, and it is just this form that cannot be 
extended over the full sphere of directions. 
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Note added. After this work was completed, the authors became aware that possible ambiguities in defining 
the geometrical phase were pointed out some time ago (in a context different from ours) by Berry (1987) 
and more recently by Anandan (1989). In particular Anandan, as a solution to this problem, proposes an 
invariant formulation of the geometrical phase, describing the motion of the vectors in Hilbert space with 
respect to a chosen reference frame. 

We can rephrase the discussion made at the end of Q 2 in the language of Berry (1987). The total phase 
@(T), acquired by a state when H ( t )  is taken slowly round a cycle, can be written as a Laurent series in the 
‘slowness’ parameter E (the inverse of the evolution period T): 

1 
@ ( T )  = ;@d + )’ f O(E) 

where transitions from the initial state to other states are neglected. For an adiabatic process ( E  + 0) only 
the first two terms on the right-hand side are significant: the first term (0(1/~)) is the dynamical contribution 
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to the phase, the second one (independent of E )  is Berry’s phase (see (2.7)). The E independence of the Berry 
phase is just another way to show that the geometrical phase depends only on the geometry of the path in 
parameter space and not on the rate of progress along it. Indeed, one way to unambiguously extract the 
geometrical contribution from the total phase Q is via a limiting procedure: 

This definition applies equally well after we have performed a time-dependent unitary transformation (that 
is, to Q’ of (2.9)). Thus, even if the geometrical phase can apparently be absorbed into the dynamical one, 
this is another way to single it out unambiguously. The reason is that, after applgng a time-dependent 
unitary transformation to remove Berry’s phase, we end up with a new Hamiltonian H ( t )  that is not merely 
a function of E t  (as the original Hamiltonian was) but a function of both E t  and E alone. The coefficient 
of the 1 / ~  term in the phase now contains a part proportional to E,  producing a constant term to account 
for the original 0(1) term (Berry’s phase) that was removed. Thus H ( t )  is in a sense a ‘fake’ Hamiltonian 
with geometry smuggled into its dynamics. In another sense, we can view thk limiting procedure ( E  -+ 0) 
for defining the geometrical phase as a way to compare two Hamiltonians H ( t )  ‘nearby’ in E .  Thus the 
Berry phase appears as a property not of an individual Hamiltonian but of the limit of a whole family of 
Hamiltonians indexed by the adiabatic parameter E .  
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We thank one of the referees for suggesting this analysis to us. 

Appendix 

In this appendix we want to perform the same analysis presented in Q 2 but for the 
classical case (Hannay 1985, Berry 1985). The anholonomy effect consists in this case 
of an extra angle (Hannay’s angle) swept by the fast variables (pi,@ while they are 
carried around in a closed loop by the slow parameters (ll,,R,). We will not review 
here the derivation of the Hannay angles but refer the reader to the literature (Hannay 
1985, Berry 1985, Gozzi and Thacker 1987a, b, Giavarini et a1 1989). 

We have seen that in the quantum case we were free to carry out parameter- 
dependent unitary transformations; in the classical case we are free to make parameter- 
dependent canonical transformations. Following Gozzi and Thacker (1987b), the total 
geometrical plus dynamical part of the motion comes from the ‘effective adiabatic 
action’ : 

Se, = lT dt [ (ill + ( p i g ) )  kl - fi] 

where i = 1,. . . , N ;  I = 1,. . . , M  (repeated indexes are summed) and where 

f i ( I i ;  R,) = 2 1  ( I i ;  R,) + H,(R,, n,). 
The pi, qi are the fast variables and ll,, R, the slow ones (or parameters). XI ( I ;  R) (we 
drop the subscripts from now on) is the Hamiltonian for the fast variables expressed 
in action-angle coordinates I and 6 : 

YW; R)  = H , ( P ( I ,  e ;  RI ,  q ( z ,  e ;  R ) ;  R) .  

H,(R,, ll,) is the Hamiltonian for slow variables. The ‘average’ symbol ( e  e )  means the 
angle-average at fixed I and R :  
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In the present work we are taking the slow variables to be external parameters, so we 
disregard the Lagrangian of the slow variables L, = l7$, - H, in Sef. The classical 
analogue of the quantum phase On swept by the system in a period T is then given by 

In the equation above we have used the fact that X l ( Z ; R )  = (Xl(Z;R))  because Zl 
is independent of 0. 

Let us now see what happens when we perform a time-dependent canonical trans- 
formation: 

Suppose for example that we choose an F,-type transformation (Goldstein 1950)T. 
Then HI goes into an f i ,  given by 

- a 
Hi (E, ?; R)  E Hi ( 4  (G, F; R)  9 P (G, F; R) i R )  + t F l ( q  (G, E; R )  , G; R )  . 

Now in f i ,  we re-express G, F in terms of action-angle variables: 
- - =;T(z ,e;R)  p=F(z , e ;R)  

and we have 

- aF 
X1(I,O;R) = &l + A. ('43) a t  

Now, going back to equation (A2), we have to perform the change to @,?) inside 
(pdq). From the general theory of canonical transformations (Goldstein 1950) we have 
that 

So, taking the average, we obtain 

If F ,  depends on t only through the parameters R, ,we can write 

a F  aF, 
at dR 
A- - -R.  

t Nothing changes in the conclusions if it is not an F1-type transformation. 
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Using now the relations (A3)-(A5) we can rewrite equation (A2) (for a closed loop in 
parameter space) as? 

The third term on the right-hand side of the equation above is 

= J T  (2) k d t  = $ (s) dR. 

This expression is zero on a closed loop in parameter space R, since$ (dF,/dR) = 
d(F,)/dR and so 

if (F,) is single-valued in R. It follows that Se, (the sum of the geometrical (pdq) 
and the dynamical part - 2, dt) is a canonical invariant when evaluated on closed 
loops in parameter space. This is the analogue of the fact that the phase @,, in $ 2 
was a unitary invariant. Note that this is the profound reason why we need to add the 
extra geometrical part to the dynamical one: the dynamical part alone would not be 
canonically invariant; it is only the sum of the two that has this property. Note also, 
from (A4), that the geometrical part alone would not be invariant: 

since (paq/aR) does not change as a total derivative in R. The same can be said for 
the dynamical part (see (A3)). So, as in the quantum case, the non-invariance of the 
two single parts (geometrical and dynamical) allows us to shift as much as we want 
of the geometrical part into the dynamical one and vice versa, but the sum of the two 
remains the same. We could even make the geometrical part equal to zero (as in the 
quantum case) by performing a canonical transformation with an F, such that (see 
044)) 

t The transformed 21 in principle might depend on 0, but thanks to the adiabatic hypothesis we will use 
its averaged (. . ,) value (Arnold 1978). 
4 Here we follow Berry (1985) and not Hannay (1985) or Gou i  and Thacker (1987b (appendix)). In Berry 
the (...) averages are in the 8 variables which do not depend on R (see the definition (Al)) and so d/dR 
can be pulled out of the average (. . .) ; while in Hannay (and also in the appendix of Gou i  and Thacker 
(1987b)) the averages are in the p ,  q variables, which depend on R, and so in that case the d/dR cannot be 
pulled out of the average (. .). 
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Of course there might be obstructions in finding a globally defined ( F , )  that implements 
the relation (A7) (Gozzi and Thacker 1987b) but, as mentioned before, experiments 
probe local trivialisations of the associated bundle, so we can (also at the classical level) 
always take the geometrical part away locally, making it dynamical. The geometrical 
character of this extra piece of the dynamical phase is nevertheless preserved in the 
sense that, as in 0 2, it just depends on the geometry of the loop and not on the rate 
of progress along it (see its expression in (A2)). 

Let us notice from (A2) that, under a parameter-dependent canonical transforma- 
tion, the term? 

transforms as a connection in RI space, in fact from (A3), (A5) and (A6), we have: 

(note that ( F , )  is, because of the average, a function of R and I only). So even the 
parameter-dependent canonical transformations can be seen as gauge transformations 
in R, space. The connection is no longer just 2, = (pdq/dR,) (as with the phase 
transformation of Berry (1985)), but 

= ( P $ - )  - (Xl) (-&) * 
The angle-origin reshifting (Berry 1985, Hannay 1985) is just a particular case of 
this parameter-dependent canonical transformation. The reader, however, might be 
bothered by the fact that in our new connection d, we have a term (dt/dR,) that 
depends on the loop in parameter space chosen. To be precise our d, is not a function 
of RI but a functional of R,(t): once R,(t) is given then d, becomes a function of R,. 
So it is only in this loose sense that we can look at the parameter-dependent canonical 
transformations as ‘gauge’ transformations. 

The rest of this appendix presents, at the classical level, the analysis given in 0 2 
for the B * CT model, made classical through Grassmannian variables. 

Explicitly we have the classical Hamiltonian H = -;yt8u) where 8, = iBk&kij and 
y = (y,,yz,y3), = vi, are real Grassmann variables (Casalbuoni 1976a, b, Berezin 
and Marinov 1977). Now suppose we perform a canonical transformation, generated 
by the function F (y ,  G),  to new variables @ 

Matching the coefficients we obtain the transformation rules: 

- aF 
H = H + - .  

a t  

t We will be inverting here the functional relations RI = R&) to re-express t as a function of the &. 
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Before choosing the explicit form for F one observation is in order: in the adjoint 
representation of the su(2) algebra we have (Jk)/,, ,  = icklm so that the magnetic-field 
matrix is given by % = B . J .  Then we can describe the slow motion of B just as we 
have done in the quantum case (3.2), that is 

5 = B U ( O , ~ ) J , U + ( B , ~ ~ )  B = I B I  

where the U matrices are the analogue, in the adjoint representation (three dimen- 
sional), of the two-dimensional U matrices that we have already seen in their funda- 
mental representation (3.3). Note that they are not globally defined over the parameter 
space. Now we fix the form of the generating function to be F = i iy tUG.  This yields 
the Hamiltonian 

where, according to the adiabatic hypothesis, we keep only the ‘diagonal’ part in the 
last term of the right-hand side. In order to calculate UtdU we use a group theoretical 
argument: the term in question belongs to the su(2) algebra so it must be of the form 
UtdU = wkJk where the coefficients ok are the Maurer-Cartan differential forms of 
su(2) which depend only on the abstract group algebra (Chevalley 1946). So we are 
entitled to evaluate them in the representation we like best; but we have already done 
this calculation in the fundamental representation when solving the quantum case (3.4) : 
the diagonal term is w3 = i(1 - cos 8)dcp. The resulting Hamiltonian turns out to be 

- H 1: -1 [B + (1 -COS e)+]$~,w. 

We see that fi is manifestly written in terms of ‘normal modes’ and the extra contri- 
bution to the magnetic field is responsible for the Hannay angle, the classical relic of 
the quantal Berry phase (Hannay 1985, Berry 1985). 
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